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Abstract - The approach to the study of vector and 2-tensor fields tomography problems on the plane
is presented. The new orthogonal polynomial bases of vector and symmetrical 2-tensor solenoidal fields
were built with the help of bivariate Chebyshev ridge polynomials. These bases are useful not only in
tomography, but also have potential applications in fluid mechanics, electromagnetism and image pro-
cessing problems. This approach can be generalized for the m-tensor field tomography of arbitrary rank
m. The numerical results of this novel inversion algorithm for vector and tensor Radon transform are
presented.

1. INTRODUCTION

In vector tomography we need to reconstruct a vector field from the tomographic measurements, which
are often modeled by the inner product probe transform of a vector field [12], [19]. This transform is the
inner product of the classical Radon transform of a vector field with a unit vector, called the probe, which
may be a function of the projection orientation. The special cases of the inner product probe transform
are the longitudinal and transverse transforms, also known as the vectorial Radon transform and Radon
normal transform respectively. In this paper we deal with the longitudinal transform (vectorial Radon
transform), which appears in acoustic transmission measurements (time-of-flight data) and in ultrasound
Doppler backscattering measurements on (blood) flows, namely the first moment of the spectra velocity is
interpreted by means of vectorial Radon transforms, see [3], [11], [15], [18]. The tensorial Radon transform
arise in integrated photoelasticity, when one needs to reconstruct the optical and stress tensor fields in the
elastic and transparent media from optical transmission measurements (interferometric measurements),
see [1], [17]. Many more facts about tensor tomography problems and other references to this theme can
be found in [1], [6], [10], [13], [16] and [17].

In this paper we consider the tensor tomography problem of the object space Ly (I, S,, ) — the space of
symmetrical 2D tensor fields of rank m = 1 or m = 2 and square integrable in the unit disc . We construct
a new orthonormal polynomial basis for Ly (ID, S, ), that was built with the help of bivariate Chebyshev
ridge polynomials. It is known that only the solenoidal (divergence-free) part of vector /tensor field can be
reconstructed from vector/tensor Radon transform, thus the orthogonal polynomial bases was constructed
both for solenoidal and potential (irrotational) subspaces of Ly (D, S, ). The novel inversion algorithm for
the vector and 2-tensor fields tomography problems was developed and numerically implemented.

Our previous work [9] deals with the same tensor tomography problems in the fan beam scanning
geometry that were solved with the help of Zernike polynomials.

1.1. Statement of the Vector and 2-Tensor Fields Tomography Problems
1
Let us consider the Cartesian coordinate system (z',z?) on the plane R? and let D := {x = <;:2 ) €

R? : (z')? + (z?)® < 1} denote the unit disk on the plane. The symmetric m-covariant tensor field
al™)(x) defined on D can be treated as a mapping

a™ DS,
where S,,, denote the space of symmetric m-covariant tensors in R? with the inner product (-, -)s . Here

and subsequently the superscript (m) is a remember of the rank of the tensor field a.
So, for m = 1 we have S; — the space of 1-covariant tensors, or simply (co)vectors,

2 2
S = {am =3 aude’ = (a) } @b, =S 0, 1)
=1 2 i=1
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and for m = 2 we have S; — the space of symmetric 2-covariant tensors, or simply 2-tensor,

2
; ; a a
S2 = a(z) = Z aijdxz ® do’ = <a; a;;) , Qij = Qj; y ( 2) b Z 0,1] ij - (2)
1,j=1 3,j=1
First we recall the classical Radon transform R of m-tensor fields a(™ supported on the unit disk D
w(s)
[Ral™](s, @) := / al™ (s0 +tO4)dt, s € [-1,1], ¢ € [0,27), (3)
—w(s)

where w(s) = (1 — s%)1/2, 8 = (cosp,sinp) T, O+ = (—sing,cosp) .

We define the m-tensor Radon transform R, of m-tensor fields a(™ supported on the unit disk D as

follows

[Rnal™](s,) == ((64)™, [Ra™](p, 9))s, .- (4)
Here (-,-)s,, is the pointwise inner product (1) or (2), (81)™ is the “probe” vector/tensor, namely
(01)! := 6+ and (0+)% := 0+ ® 6+, ® is the tensor product.

We will treat the transform (4) as operator R, : La2(ID,S,,) — Lo([—1,1] x [0,27),w™!), and it is
known that KerR,, coincides with the subspace of potential (irrotational) fields dH} (D, S;,—1), so we
can say that potential fields are “invisible” for the tensorial Radon transform R,.

The function g(s,¢) = [R,,a™](s, ) is a tomographic date or sinogram. A sinogram is an image
of the Radon transform (4), where s and ¢ form the vertical and horizontal axes respectively, of a
Cartesian coordinate system. The test vector field and its sinogram are displayed in Figures 1(a) and (b)
respectively. For a particular ¢ the function g(s, ) is a function of s and is called a parallel ray projection
or just a projection. In the most real problems we expect to have a discrete version of a sinogram sampled
for many values of s and ¢.

Our task is to reconstruct solenoidal vector/2-tensor field a(™)(x) from its known vector/2-tensor
Radon transform (4), g(s, ) = [R, a™](s, ).

2. PRELIMINARIES

In this section, we review some facts from vector and tensor analysis [17], [20], define some functional
spaces of tensor fields and establish the notations that will be used later. At the end we introduce
Chebyshev bivariate ridge polynomials and recall their application to a scalar Radon transform.

2.1. Vector and Tensor Analysis

We shall denote the class of real-valued m-covariant symmetric tensor fields a(™) (x), whose all components
are functions from C*(D), 1 < k < oo by C¥(I),S,,). A subset of C*¥(I),S,,) whose finite support is
contained in D will be denoted by CE(DD), S, ). L2(ID, S,,) and Sobolev spaces H*(D, S, ), H}(D, S,,) are
spaces of vector or tensor valued functions with components in Ly(D) and H*(D), H(D) respectively.
The space Lo(ID,S,, ) is a Hilbert space with the inner product and the finite norm, denoted by ((-,-))
and || - ||

(@™, MY = (™, MY L o // ) (x), b (x))s,, dtda?,

la™1* = lla™|1},ms,.) = (@™, a(m)>>-
We will always denote vector and tensor fields and any related quantities such as functional spaces, by
boldface characters.

Now we recall the basic differential operation of vector and 2-tensor analysis and will discuss both
vector (m = 1) and 2-tensor cases (m = 2) in a parallel manner. A smooth m-tensor field a(™ €
CH(D,S,,) is called solenoidal or divergence-free if its divergence equals to zero, where the divergence &
of a smooth vector field a(!) is define as

1) — 3: 1) _ 1: ay L 8(11 8@2
5a():dlva()_dlv<a2),_@+@

and the divergence § of a smooth 2-tenor field a(® is define as
Oa Oa
g 0
§a® =4 <a11 a12> = , Q12 = G21.
@21 a2 Oazy | Oagy

ozl + 02
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In connection with the Helmholtz-Hodge orthogonal decomposition of the space L2(D,S,,), corre-
sponding to the operators d and d, we define two subspaces of solenoidal or divergence-free m-tensor
fields, the first is

H(D,Sp; 6 =0) := {a™ € H(D,S; 5){ §a™ = o}, (5)
where H(D,S,,;d) is the graph space of —operator over Ly(ID, S, ), i.e.

H(D,S,,;68) :={a™ € Ly(ID,S,)|6a™ € Ly(D,Spu_1)}. (6)

It will be a Hilbert space under the graph norm. It is clear that subspace H(ID, S,,,; 6 = 0) is a completion
(closure) of the set of smooth solenoidal m-tensor fields with respect to the norm || - || of Ly (D, S, ).

The second subspace is Ho(DD, S,,,; 6 = 0), which consists of all solenoidal tensor fields on D that are
tangent to 0D

Hy(D,S,; 6 =0):={a™ e H(D,S,,;0 = 0)| (n)™,a™)s, =0 on b}, (7)

where n being the unit outward normal to the boundary of D, (n)! := n, (n)? := n ® n. Vector fields
from subspace Ho(ID, S1; d = 0) are used to represent incompressible fluid flows within fixed boundaries,
and magnetic fields inside plasma containment device.

A m-tensor field a™ € C*®(I),S,,) is called a smooth potential tensor field, if for some (m — 1)-
tensor field v(™m=1) € C®°(ID,S,,_1) we have a(™ = dv(™~1 and v(™~1) is the potential, where d is the
symmetrized covariant derivative of the symmetric (m — 1)-tensor v(™~1), For m = 1 we have

T
dv =grad v := (81} 8U> ,

9!’ 9z

v is a scalar potential. In fluid mechanics this vector fields are called irrotational vector fields.
For m = 2 we have

91 L(ouw v
dv® =q (") = Ox! 2\ 0z2 Ox!
Y N R CI) vz ’
2\ 0z2 Ozt Ox2

v(1) is a (co)vector potential and in this case the symmetrized gradient of a (co)vector field is a symmetric
2-tensor field.

We consider three subspaces of potential m-tensor fields, dH*(ID, S,,,_1) (gradient fields), dH}(ID, S, —1)
(grounded gradient fields) and HG (harmonic gradient fields), define by

dHY(D, Sy ) = {dv<m‘1>|v(m*1> € HY(D,Sm_1)},

dHY(D, Sp_y) = {dv<m—1>1v<m—1> € HY(D,Sm_1)},
HG := dH'(D,S;,—1) © dH(D, Spo—1),
where © is the orthogonal subtraction of subspaces.
It is known, that a m-tensor field can be represented as a sum of the divergence-free (solenoidal)
component and symmetrized gradient of a (m — 1)-tensor potential. The classical result in this direction
belongs to H. Weyl [21] and is connected with the decomposition of the L space of vector fields into

the orthogonal sum of solenoidal and potential fields. The following theorem is about the orthogonal
decompositions in Lo (D, Sy ), which are often referred to as Helmholtz—Hodge decomposition:

Theorem. The space Lo(DD, S,,,) is the direct sum of three mutually orthogonal subspaces
Ly(D,S,,) = Ho(D,S,,; 6 = 0) © HG @ dH(D, S,—1) (8)

with Ker § = H(D, S,,,;6 = 0) = Ho(D, S,,;0 = 0) & HG.
Form this decomposition we see, that the subspace of harmonic gradient HG may be defined as

HG = H(D,S,,;6 = 0)NndH'(D,S,,_1).
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In fluid mechanics the harmonic gradient component of vector field, which both solenoidal and irrotational,
is called also as a laminar component.

The survey of the historical threads that led to the Helmholtz-Hodge decomposition theorem and the
proof for 3D case may be found in [4]. See also [5], [7], [8], [L7] regarding this problem.

2.2. Chebyshev bivariate ridge polynomials and their Radon transform
We shall use the Chebyshev polynomials of the first and second kind in the interval ¢ € [—1,1]

Tn(t) := cos(narccost), Up(t) := sm((n}ll)_atr;cost), n=20,1,.... (9)

Let’s denote the bivariate Chebyshev polynomials by

—1)k k k
Ui (x) := (\/7_3 Un (xl cos nil + 2% sin #) ,n=01,..., k=0,1,...,n. (10)
. : o - nk o wk O\ :
Each function in (10) is @ plane wave propagating in the direction ( cos ?,sm a1 or a ridge
n

functions of x, and the univariate function U, is called the profile of U,. The system (10) is a complete
orthonormal system in Lo (D), see [2], [14], [23].
Let us denote the Radon transforms of basis functions (10) by un(s, ),

unk (s, ) = [RUnt] (s, ).
We have, see for example [2], [10], [14], that

uns(s,9) = 2w, oos (1o )] VI 009 (11)

n+1

and the functions uy; are orthogonal in the weighted Hilbert space L2([—1,1] X [0,27),w™!) with the
weight function w=! = 1//1 — s2.
So, if some function a(x) € Ls(ID) then it is represented by its Fourier series

a(x) = Z Z g Uni (%),

n=0 k=0

and its Radon transform will look like

9(87()0) = [RCL] (87 (p) = Z Zankunk(s790)'

n=0 k=0

One of the ways for calculating coefficients a,j is the following: let us introduce the n-th Chebyshev

momentum g, () of g(s, )
wk
ankUn <cos ((p e 1)) . (12)

k —1)k
Using the substitution ¢ = n7r forn=0,1,..; k=0,1,..,nin (12), we get an; = (=D Jn ( mk ) ,

1 mo(_1)k
gn(p) := / 9(s,0)Un(s)ds = VT Y (n—il—)l
-1 k=0

+1
which leads to the inversion formula

I o= — . mk
)= = 3 30 (5 ) O

k
Here only the countably number of parallel ray projections g (o, 7r+ 1) is needed to recover the unknown
n

function a(x).
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3. THE POLYNOMIAL BASES FOR L;(D,S,,) AND ITS SUBSPACES

In this section we construct the orthogonal polynomial bases for the space of tensor fields L (DD, S, ) and
for the various subspaces that appear in the Helmholtz-Hodge decomposition theorem both for m = 1,2.
We should first of all introduce for n = 0,1,2,... and k = 0,1, 2, ...,n the unit vectors defined by

T T
k
05},2’1 = (— sin _L,cos mk ) ; 97(11,3’2 = (cos ;L%,sin mk ) , (0(1) At 0(1) !

n+1 n+1 n+1
Proposition 1. The system of vector fields {U( , U (1) 1} defined by
Ul = EL 0 e (13
U (x) = L’%eﬁ?%k(x) (14)

is an orthonormal polynomial basis for the space Lo(D, S1). Moreover Ulek)’o — solenoidal, div U;lk)’o =0,
but Ugllk)’l are potential vector fields.

Let’s define new polynomial vector fields by

~(1),0 1),0 1
Usﬂc) = ng,k) - VZ,LW (15)
~ (1), , L
T = U =W (16)
0
ngl,n—%-l Tl ZU(U ) (17)
1 1 1,1
k=0

We see, that
(1),0 ﬁ 1),1 v 1,0 w( 1),1
00) = E)O) =0, (()1) - U(()O) ) E)l) - UEJO) :

Proposition 2. For vector fields (15)-(18) the following statements hold:
(a) %{ﬁggvo} — Ho(D,S; ; div = 0)
(b) {Vn Lo WSLH} form an orthogonal basis for HG
(c) Span {Ugbl,g’l} = grad H} (D)
(d) {U(l) . VSnH} form an orthogonal basis for gradH' (D)
(e) {U(l) °w SZLH} form an orthogonal basis for H(D, Sy ;div = 0) = Ho(D, S ;div = 0) ® HG.

In this proposition the set of finite linear combinations of elements v, is denoted by Span{v;} and
Span{v;} denotes the norm closure.

By analogy, we formulate propositions for the 2-tensor case.
Proposition 3. The system of tensor fields {U%° UR! U} defined by

_1\k

U5 0(x) = %9&?’1 ®° 00 Uns (%), (19)
—1)*

U 0 = 00 60 0 (), (20)
. —1)k

U0 = 00 @00 U (21)

is orthogonal polynomial basis for La(ID, So) with ||U, ), =1, ]lU 2), = ]|U512,32|[ = 1. Moreover

1
\/-2—7

Ug:k),o — solenoidal, 5US,3’0 =0, but Ug‘)k)’ and Ug;k’Z are potential tensor fields.




KO05
6

In this proposition we used the operation ®°, which denotes the symmetrized tensor product of two
vectors, i.e. if al¥) and b(!) are some vectors, then

a) @5 b1 .— (am ®b® 4+ p® ®a<1))
2

Let’s define new polynomial 2-tensor fields by

U’ =0, (22)
£1(2),0 (2).0 Tk (2) o TE )
U, =0, —2cos — s Vn g1 — 2sin n—_l_an’nJr2 (n>1), (23)
Ul =0, (24)
~(2),1 N1, 2 . (2 2 rk 9
Ugﬂ? = Uglk) + 3 sin 1 n,)n+1 ~3 cos —— 5%3”2 (n>1), (25)
uip)? =0, (26)
~(2) 2 22 2 Tk 2 2 . 7wk 5
U’Elk? = U1(11c) - g Cos n+ lwn,)n-i-l - :0; Sin n+ 1Wn,21+2 (n > 1)? (27)
n
2) (2,0 2 1 Tk _.(2),0
V((n) = Ugo) s Vg1 = — Z;Ocos - lUnk) , (28)
(2) 2),0
Vn n+2 - n -+ 1 Z Sln n4+ 1 ) (29)
w =2 we o 1 i “osin U@t oo T y®2) sy (30)
01 00 > n,n+1 n+1 ~ n+1 nk n4+1 nk - ’
D _ @1 w@ 1 % k@) 2
W) =ult, Wi, = — I;)( 2cos —— U + = _y® ) (n>1). (31)

Proposition 4. For 2-tensor fields (22)-(81) the following statements hold:
(a) 'S”ﬁaﬁ{ﬁ(“’,j’o} = Hy(D,S5;6 = 0)
(b) {Vn na1s SLH, Wfi)nﬂ, Wn n+2} form an orthogonal basis for HG
(c) Span {U"” ﬁﬁfk)’z} = dH} (D, S;)
(d) {Ufk)’ , U ?) 2 ngﬂ_l, " n+2} form an orthogonal basis for dH' (D, S;)
(e) {UR0 ,W;%ZL L1, W) Y form an orthogonal basis for H(D,S,;6 = 0) = Ho (I, S5;6 = 0)oHG.

4. SERIES INVERSION OF THE TENSOR RADON TRANSFORM
We recall that only the solenoidal part of a vector or 2-tensor field can be reconstructed from the vector

or tensor Radon transform, so the total tensor field is assumed to be solenoidal and is denoted by agz).
After we constructed polynomial bases for H(ID,S,,;d = 0), see Propositions 2(e), 4(e), we can give a

series inversion for tensor tomography problem.
Theorem 1 (vector case, m = 1). A solenoidal vector field aS)% € H(D,S;;6 = 0) and its Radon
transform g(s, ) := [R1 agz](s, ) have the Fourier series expansions

n

ZZankU )+ Y a1 WL (),

n=0k=0 n=0
iy mk
_ggankcos<(ﬁ_m>Um¢($(p \/_Z nn+ sm n+1 \/1—_—32[]

and the following inversion formulae hold for the coefficients (n=0,1,...; k=0,...,n)

S
=2 o (22) - (22)).
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where g, (o f g(s,0)Un(s)ds is the n-th Chebyshev moment of g(s,y) and
- | wk wk wk
et (e e 2)

Theorem 2 (tensor case, m = 2). A solenoidal 2-tensor field asol (X) € H(D,S2;d = 0) and its Radon

transform g(s, @) = [Rga( )] (s, ) have Fourier series expansions

sol

sol Z Z ankU @) 0 ) + Z (an,n+lwn2,)n+1( ) + an "+2Wn2,21+2( )) s

n=0 k=0 n=0

wk 2 . .
(s,) = Z Z QA COS? (go - ——————> Unk (s, ) + 7= (ap1 sin  — aga cos ) sin py/1 — 52

n=0 k=0 +1
3w 1
+ N ; ] (@n,nt18I0 @ — Gp pta cos @) sin[(n + 1))V 1 — s2U,(s)

and the following inversion formulae hold for the coefficients (n=0,1,...; k=0,...,n)

(=D wk
ank = Wgn <n+1> ]
(a0 sin o = ang cos ) sinip = —=(an (i) (i), (2)
(@0 sine = o cos)sinl(n + Dl = 20T 0n0) =) (021, 39)

where gn(p) = f 1 9(8,90)Un(s)ds is the n-th Chebyshev moment of g(s,¢) and

5 7k 7k
0= s () o2 oo 2))

Remark. The coeflicients ay n+1,an n+2 may be found from (32) and (33) in different ways, using only
the countably number of parallel ray projections.

5. NUMERICAL RESULTS
The novel inversion algorithm, based on Theorems 1, 2 was implemented for vector and tensor cases. The
following examples show some numerical results.

Example 1 (vector case, m = 1). Consider a vector field (see Figure 1), whose components are
polynomials of degree 25 with random coefficients (a). Its longitudinal vector Radon transform R,
(sinogram) is shown in (b). Inverting the vectorial Radon transform using the Theorem 1 we reconstruct
the solenoidal and harmonic parts (c) from H(ID),S;;6 = 0) = Ho(D,S;;6 = 0) ® HG. Then, knowing
the structure of the basis, we can split the reconstructed field into the pure solenoidal part (d) from
Hy(D,S:;6 = 0) and the harmonic part (f) from HG. The vector field shown in (e) is the difference
between the original vector field (a) and a reconstructed vector field (¢) and represents the leftover
potential part of the vector field (a) from dH} (DD, Sp), that is “invisible” for the vector Radon transform
Ri.

Example 2 (tensor case, m = 2). Consider a solenoidal tensor field (see Figure 2) from H(D, Sy;6 = 0),
whose components (a1), (a2), (as) are polynomials of degree 40 with random coefficients. Inverting the
tensor Radon transform R, using the Theorem 2 we reconstructed it as solenoidal tensor fields whose
component are polynomials of degree 20 (see (b1), (b2), (bs)), degree 30 (see (c1), (c2), (¢c3)) and degree
40 (see (d1), (dz), (d3)). The last reconstructed tensor field (with components (dy), (do), (d3)) is almost
identical to the original solenoidal tensor field.
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Figure 1: Illustration to the Example 1, see the text for details.
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Figure 2: Illustration to the Example 2, see the text for details.
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